- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gunnel, Andy (1)
-
Hood, Sarah (1)
-
Lenzi, Tommaso (1)
-
Mendez, Joel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Powered prostheses aim to mimic the missing biological limb with controllers that are finely tuned to replicate the nominal gait pattern of non-amputee individuals. Unfortunately, this control approach poses a problem with real-world ambulation, which includes tasks such as crossing over obstacles, where the prosthesis trajectory must be modified to provide adequate foot clearance and ensure timely foot placement. Here, we show an indirect volitional control approach that enables prosthesis users to walk at different speeds while smoothly and continuously crossing over obstacles of different sizes without explicit classification of the environment. At the high level, the proposed controller relies on a heuristic algorithm to continuously change the maximum knee flexion angle and the swing duration in harmony with the user’s residual limb. At the low level, minimum-jerk planning is used to continuously adapt the swing trajectory while maximizing smoothness. Experiments with three individuals with above-knee amputation show that the proposed control approach allows for volitional control of foot clearance, which is necessary to negotiate environmental barriers. Our study suggests that a powered prosthesis controller with intrinsic, volitional adaptability may provide prosthesis users with functionality that is not currently available, facilitating real-world ambulation.more » « less
An official website of the United States government
